Abstract

Twenty-eight strains of Pseudomonas syringae pv. actinidiae isolated in 1984, 1987 and 1988 from kiwifruit orchards in Japan were tested for their resistance to copper sulfate. All strains isolated in 1984 were copper sensitive with a minimum inhibitory concentration (MIC) of cupric sulfate of 0.75 mM. However, some strains isolated in 1987 and 1988 were resistant, with the MIC ranging from 2.25 to 3.0 mM. All copper-resistant strains contained at least one of two plasmids, pPaCul (about 70.5 kb) or pPaCu2 (about 280 kb), or both. In a copper-resistant strain Pa429, the location of the copper-resistance gene(s) was examined by insertional inactivation with Tn5. The MIC of copper sulfate in the copper-sensitive mutant obtained by Tn5 tagging decreased from 2.75 to 0.75 mM. The 14.5 kb BamHI fragment, designated pPaCuB14, containing the same locus mutagenized with Tn5 was cloned from pPaCu1. However, pPaCuB14 did not confer copper resistance in the transformant of copper-sensitive strain Pa21R, suggesting that this clone did not contain a full set of copper-resistance gene(s). Then a cosmid library of pPaCu1 was constructed and six cosmid clones hybridized with pPaCuB14 were selected. One of the six cosmids, designated pPaCuC1, conferred a near wild-type level of copper resistance in the transformant of the copper-sensitive strain. pPaCuC1 had a homologous region that hybridized with all of the PCR-amplifled fragments of copA, copB, copR, and copS genes of P. syringae pv. tomato. DNA sequence analysis of the homologous region revealed the existence of four open reading frames (ORF A, B, R and S) oriented in the same direction. The predicted amino acid sequences of ORF A, B, R and S had 80, 70, 97 and 95% identity with CopA, B, R and S of P. syringae pv. tomato, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call