Abstract

We present an approach to similarity‐based retrieval from knowledge bases that takes into account both the structure and semantics of knowledge base fragments. Those fragments, or analogues, are represented as sparse binary vectors that allow a computationally efficient estimation of structural and semantic similarity by the vector dot product. We present the representation scheme and experimental results for the knowledge base that was previously used for testing of leading analogical retrieval models MAC/FAC and ARCS. The experiments show that the proposed single‐stage approach provides results compatible with or better than the results of two‐stage models MAC/FAC and ARCS in terms of recall and precision. We argue that the proposed representation scheme is useful for large‐scale knowledge bases and free‐structured database applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.