Abstract

In this paper, we present a comparison of two novel exponential schemes for convection-diffusion problems. An exponential scheme uses in one way or another the analytical solution of the flux of a one-dimensional (1D) transport equation thereby improving the results of the simulation. In a multidimensional problem, the 1D solution is combined with operator splitting. The two approximations to be assessed are the Finite Volume-Complete Flux (FV-CF) and the Enhanced Numerical Approximation of a Transport Equation (ENATE) schemes. They were proposed by the two groups that co-author the current paper. Both schemes share many similarities in 1D but differ, especially in 2D, in some aspects that will be highlighted. In their derivation the algebraic coefficients of the computational stencil are integrals of flow parameters whose calculation is crucial for the accuracy of either method. These factors and their various approximations will be analysed. Some test cases will be used to check the ability of both schemes to provide accurate results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.