Abstract
BackgroundAround half of the global population is living in areas at risk of malaria infection. Plasmodium vivax malaria has become increasingly prevalent and responsible for a high health and socio-economic burden in Ethiopia. The availability of gametocyte carriers and mosquito species susceptible to P. vivax infection are vital for malaria transmission. Determining the susceptibility of vector species to parasite infection in space and time is important in vector control programs. This study assesses the susceptibility of Anopheles arabiensis, An. pharoensis and An. coustani group to Plasmodium vivax infection in Ethiopia.MethodsLarvae of An. arabiensis, An. pharoensis and An. coustani group were collected from an array of breeding sites and reared to adult under controlled conditions. Batches of adult female mosquitoes of the three species were allowed to feed in parallel on the same infected blood with gametocytes drawn from Plasmodium vivax infected patients by Direct Membrane Feeding Assays (DMFA). Fed mosquitoes were kept in an incubator under controlled laboratory conditions. Seven days after each feeding assay, mosquitoes were dissected for midgut oocyst microscopy and enumeration. Data were analysed using R statistical software package version 3.1.0.ResultsOver all, 8,139 adult female mosquitoes were exposed to P. vivax infection. Of the exposed mosquitoes 16.64 % (95 % CI: 1,354–8,139) were properly fed and survived until dissection. The infection rate in An. arabiensis and An. pharoensis was 31.72 % (95 % CI: 28.35–35.08) and 28.80 % (95 % CI: 25.31–32.28), respectively. The intensity of infection for An. arabiensis and An. pharoensis was 2.5 (95 % CI: 1.9–3.2) and 1.4 (95 % CI: 1.1–1.8), respectively. Gametocyte density was positively correlated to infection rate and intensity of infection in An. arabiensis as well as An. pharoensis. No An. coustani group mosquitoes were found infected, though almost four hundred mosquitoes were successfully fed and dissected. All groups received blood from the same infected blood source containing gametocytes in parallel. There was no significant difference in susceptibility rates between An. arabiensis and An. pharoensis (P = 0.215).Conclusions Anopheles arabiensis and An. pharoensis showed similar susceptibility to P. vivax infection. However, An. coustani group was not permissive for the development of P. vivax parasites.
Highlights
Around half of the global population is living in areas at risk of malaria infection
The mosquitoes from the three species were fed in parallel on the same source of gametocytes, the findings in the current study suggest that the population of An. coustani group is not physiologically permissive to oocyst development, suggesting that it may not have a role in transmitting P. vivax malaria at least in the Jimma area
Anopheles arabiensis and An. pharoensis were efficiently infected with P. vivax gametocytes, while An. coustani group was not infected
Summary
Around half of the global population is living in areas at risk of malaria infection. Plasmodium vivax malaria has become increasingly prevalent and responsible for a high health and socio-economic burden in Ethiopia. The availability of gametocyte carriers and mosquito species susceptible to P. vivax infection are vital for malaria transmission. Malaria is the most widespread mosquito-borne disease posing a potential health risk to almost half of the world’s population. Plasmodium vivax malaria is not common in Africa except for Ethiopia, and most disease cases are attributable to P. falciparum, which is responsible for 90 % of malaria related deaths. Outside Africa, P. falciparum and P. vivax almost invariably coexist and are often prevalent, while the former is the most important public health threat [2]. Plasmodium vivax is the most cosmopolitan of all malaria parasites, reaching latitudinal extremes of 64 °N and 32 °S [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.