Abstract
We previously found that the enzymatic activity of 3-isopropylmalate dehydrogenase from the obligatory piezophilic bacterium Shewanella benthica strain DB21MT-2 (SbIPMDH) was pressure-tolerant up to 100 MPa, but that from its atmospheric congener S. oneidensis strain MR-1 (SoIPMDH) was pressure-sensitive. Such characteristics were determined by only one amino acid residue at position 266, serine (SoIPMDH) or alanine (SbIPMDH) [Y. Hamajima et al. Extremophiles 20: 177, 2016]. In this study, we investigated the structural stability of these enzymes. At pH 7.6, SoIPMDH was slightly more stable against hydrostatic pressure than SbIPMDH, contrary to the physiological pressures of their normal environments. Pressure unfolding of these IPMDHs followed a two-state unfolding model between a native dimer and two unfolded monomers, and the dimer structure was pressure-tolerant up to 200 MPa, employing a midpoint pressure of 245.3 ± 0.1 MPa and a volume change of −225 ± 24 mL mol−1 for the most unstable mutant, SbIPMDH A266S. Thus, their pressure-dependent activity did not originate from structural perturbations such as unfolding or dimer dissociation. Conversely, urea-induced unfolding of these IPMDHs followed a three-state unfolding model, including a dimer intermediate. Interestingly, the first transition was strongly pH-dependent but pressure-independent; however, the second transition showed the opposite pattern. Obtained volume changes due to urea-induced unfolding were almost equal for both IPMDHs, approximately +10 and −30 mL mol−1 for intermediate formation and dimer dissociation, respectively. These results indicated that both IPMDHs have similar structural stability, and a pressure-adaptation mechanism was provided for only the enzymatic activity of SbIPMDH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.