Abstract
Groundwater flow has the potential to introduce arsenic (As) in previously uncontaminated aquifers. The extent to which As transport is retarded by adsorption is particularly relevant in Bangladesh where low-As wells offer the best chance of reducing chronic exposure to As of a large rural population dependent on groundwater. In this study, column experiments were conducted with intact cores in the field to measure As retardation. Freshly collected cores of reduced iron (Fe-II) dominated gray sediment of Holocene age as well as oxidized Fe (III)-coated orange sediment of Pleistocene age were eluted at pore-water velocities of 40–230 cm/day with anoxic groundwater pumped directly from a well and containing 320 μg/L As. Up to 100 μg/L As was immediately released from gray sand but the main As breakthrough for both gray and orange sand occurred between 30 and 70 pore volumes, depending on flow rate. The early release of As from gray sand is attributed to the presence of a weakly bound pool of As. The sorption of As was kinetically limited in both gray and orange sand columns. We used a reversible multi-reaction transport model to simulate As breakthrough curves while keeping the model parameters as constant as possible. Contrary to the notion that dissolved As is sorbed more strongly to orange sands, we show that As was similarly retarded in both gray and orange sands in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.