Abstract

BackgroundLong-chain n-3 polyunsaturated fatty acids (LC n-3-PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) provide multiple health benefits for heart, brain and eyes. However, consumption of fatty fish, the main source of LC n-3-PUFAs is low in Western countries. Intakes of LC n-3-PUFA can be increased by taking dietary supplements, such as fish oil, algal oil, or krill oil. Recently, conflicting information was published on the relative bioavailability of these omega-3 supplements. A few studies suggested that the phospholipid form (krill) is better absorbed than the fish oil ethyl ester (EE) or triglyceride (TG) forms. Yet studies did not match the doses administered nor the concentrations of DHA and EPA per supplement across such comparisons, leading to questionable conclusions. This study was designed to compare the oral bioavailability of the same dose of both EPA and DHA in fish oil-EE vs. fish oil-TG vs. krill oil in plasma at the end of a four-week supplementation.MethodsSixty-six healthy adults (n = 22/arm) were enrolled in a double blind, randomized, three-treatment, multi-dose, parallel study. Subjects were supplemented with a 1.3 g/d dose of EPA + DHA (approximately 816 mg/d EPA + 522 mg/d DHA, regardless of formulation) for 28 consecutive days, as either fish oil-EE, fish oil-TG or krill oil capsules (6 caps/day). Plasma and red blood cell (RBC) samples were collected at baseline (pre-dose on Day 1) and at 4, 8, 12, 48, 72, 336, and 672 h. Total plasma EPA + DHA levels at Week 4 (Hour 672) were measured as the primary endpoint.ResultsNo significant differences in total plasma EPA + DHA at 672 h were observed between fish oil-EE (mean = 90.9 ± 41 ug/mL), fish oil-TG (mean = 108 ± 40 ug/mL), and krill oil (mean = 118.5 ± 48 ug/mL), p = 0.052 and bioavailability differed by <24 % between the groups. Additionally, DHA + EPA levels were not significantly different in RBCs among the 3 formulations, p = 0.19, providing comparable omega-3 indexes.ConclusionsSimilar plasma and RBC levels of EPA + DHA were achieved across fish oil and krill oil products when matched for dose, EPA, and DHA concentrations in this four week study, indicating comparable oral bioavailability irrespective of formulation.Trial registrationClinicaltrials.gov identifier NCT02427373.

Highlights

  • The positive benefits of long-chain n-3 polyunsaturated fatty acids (LC n-3-PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) for heart, brain and eye health are supported by many clinical studies [1,2,3,4]

  • There has been conflicting and confusing information published on the relative oral bioavailability of these omega-3 supplements with a few studies suggesting that the phospholipid form is better absorbed than the ethyl ester (EE) or triglyceride (TG) forms of fish oils [7, 8]

  • Dietary intake of omega-3 fatty acids was reported on a food frequency questionnaire (FFQ) [13] at each in-clinic visit and subjects were provided a list of foods that should not be consumed during the course of the study

Read more

Summary

Introduction

The positive benefits of long-chain n-3 polyunsaturated fatty acids (LC n-3-PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) for heart, brain and eye health are supported by many clinical studies [1,2,3,4]. There has been conflicting and confusing information published on the relative oral bioavailability of these omega-3 supplements with a few studies suggesting that the phospholipid form (krill) is better absorbed than the ethyl ester (EE) or triglyceride (TG) forms of fish oils [7, 8]. Schuchardt et al [9] conducted an acute crossover bioavailability study comparing a single dose (1.68 g) of fish oil TG, EE and krill oil but the total concentration of each fatty acid, DHA and EPA was not equal between formulations. Long-chain n-3 polyunsaturated fatty acids (LC n-3-PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) provide multiple health benefits for heart, brain and eyes. This study was designed to compare the oral bioavailability of the same dose of both EPA and DHA in fish oil-EE vs fish oil-TG vs krill oil in plasma at the end of a four-week supplementation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call