Abstract
One-cell-stage embryos derived from most random-bred and inbred female mice exhibit an in vitro developmental block at the two-cell stage in classical embryo culture media. However, embryos derived from many F1 hybrids develop easily past the two-cell stage under the same conditions. This has given rise to the commonly accepted idea that there exist blocking and nonblocking types of female mice, with only the former being prone to a two-cell block. Recently, culture media have been improved to the point that even embryos prone to the two-cell block will develop past the block in vitro, making it possible to study its etiology. Here, we show that either increased osmolarity or increased glucose/phosphate levels induced the expected two-cell block in random-bred CF1 embryos and the two-cell block at increased osmolarities could be rescued by the organic osmolyte glycine. Surprisingly, one-cell embryos from B6D2F1 (BDF1) F1 hybrid females, considered to be nonblocking, also became blocked at the two-cell stage when osmolarity or glucose/phosphate levels were increased. They were also similarly rescued by glycine from the osmolarity-induced block. The most evident difference was that the purportedly nonblocking embryos became blocked at a higher threshold of osmolarity or glucose/phosphate level than those considered prone to this developmental block. Thus, both blocking and nonblocking embryos actually exhibit a similar two-cell block to development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.