Abstract

AbstractThe surface of Mars contains abundant sinuous ridges that appear similar to river channels in planform, but they stand as topographic highs. Ridges have similar curvature-to-width ratios as terrestrial meandering rivers, which has been used to support the hypothesis that ridges are inverted channels that directly reflect channel geometry. Anomalously wide ridges, in turn, have been interpreted as evidence for larger rivers on Mars compared to Earth. However, an alternate hypothesis is that ridges are exhumed channel-belt deposits— a larger zone of relatively coarse-grained deposits formed from channel lateral migration and aggradation. Here, we measured landform wavelength, radius of curvature, and width to compare terrestrial channels, terrestrial channel belts, and martian ridges. We found that all three landforms follow similar scaling relations, in which ratios of radius of curvature to width range from 1.7 to 7.3, and wavelength-to-width ratios range from 5.8 to 13. We interpret this similarity to be a geometric consequence of a sinuous curved line of finite width. Combined with observations of ridge-stacking patterns, our results suggest that wide ridges on Mars could indicate fluvial channel belts that formed over significant time rather than anomalously large rivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.