Abstract

Glucocorticoid-induced lymphocyte cell death is a programmed process which is thought to involve the calcium-dependent degradation of DNA into multiples of 180 basepairs, characteristic of internucleosomal degradation. We have used the glucocorticoid-sensitive mouse lymphoma cell line S49.1 [wild-type (wt)] and the glucocorticoid-resistant cell line S49.22r (nt-) to evaluate the role of both glucocorticoid receptors and calcium in the regulation of internucleosomal DNA degradation and expression of calcium-dependent deoxyribonuclease activity. DNA was isolated from untreated (control) and dexamethasone (dex)-treated viable cells and analyzed for internucleosomal DNA degradation by agarose gel electrophoresis, followed by ethidium bromide staining. Glucocorticoid treatment resulted in substantial internucleosomal DNA degradation in wt cells, but not in nt- cells. This effect was inhibited by coincubation of cells with dex and the glucocorticoid receptor antagonist RU486. In contrast to the glucocorticoid response, administration of either of two calcium ionophores, ionomycin or A23187, produced internucleosomal degradation of DNA in both wt and nt- cells, although the latter were less sensitive to ionophore treatment. Interestingly, A23187 treatment also resulted in a loss of cell viability in HeLa S3 cells, a cell line that does not exhibit glucocorticoid-induced apoptosis. No internucleosomal DNA degradation was detected in HeLa S3 cells killed by A23187. To determine whether similar nucleases are associated with this internucleosomal DNA degradation resulting from both glucocorticoid and calcium ionophore treatment, 0.3 M NaCl nuclear protein extracts were prepared from control and treated cells and analyzed for protein composition or nuclease activity. To assay for nuclease activity, nuclear extracts were electrophoresed in sodium dodecyl sulfate-polyacrylamide gels impregnated with [32P]DNA. Nuclease activity was detected by removal of sodium dodecyl sulfate from the gel, activation with calcium, and subsequent visualization of the loss of [32P]DNA by autoradiography. Dex treatment of wt cells resulted in the appearance of several proteins within the mol wt range of 12-18 kDa, only one of which (16-18 kDa) exhibited calcium-dependent nuclease activity. The appearance of these proteins in nuclear extracts was inhibited by coincubation of glucocorticoid-treated cells with RU 486. Glucocorticoid treatment did not result in the appearance of nuclease activity in nuclear extracts from nt- cells. Interestingly, A23187 or ionomycin treatment resulted in an increase in activity of the 16- to 18-kDa nuclease in both wt and nt- cells. These findings indicate that both glucocorticoid receptors and calcium may share common features in the regulation of apoptosis in lymphoid cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call