Abstract
'Simulating the Inter-Cloud' (SimIC) is a discrete event simulation toolkit based on the process oriented simulation package of SimJava. The SimIC aims of replicating an inter-cloud facility wherein multiple clouds collaborate with each other for distributing service requests with regards to the desired simulation setup. The package encompasses the fundamental entities of the inter-cloud meta-scheduling algorithm such as users, meta-brokers, local-brokers, datacenters, hosts, hyper visors and virtual machines (VMs). Additionally, resource discovery and scheduling policies together with VMs allocation, re-scheduling and VM migration strategies are included as well. Using the SimIC a modeler can design a fully dynamic inter-cloud setting wherein collaboration is founded on meta-scheduling inspired characteristics of distributed resource managers that exchange user requirements as driven events in real-time simulations. The SimIC aims of achieving interoperability, flexibility and service elasticity while at the same time introducing the notion of heterogeneity of multiple clouds' configurations. In addition it accepts an optimization of a variety of selected performance criteria for a diversity of entities. The crucial factor of dynamics consideration has implemented by allowing reactive orchestration based on current workload of already executed heterogeneous user specifications. These are in the form of text files that the modeler can load in the toolkit and occurs in real-time at different simulation intervals. Finally, a unique request is scheduled for execution to an internal cloud datacenter host VM that is capable of performing the service contract. This is formally designed in Service Level Agreements (SLAs) based upon user profiling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.