Abstract

Adaptive robotics plays an essential role in achieving truly co-creative cyber physical systems. In robotic manipulation tasks, one of the biggest challenges is to estimate the pose of given workpieces. Even though the recent deep-learning-based models show promising results, they require an immense dataset for training. In this paper, two vision-based, multi-object grasp pose estimation models (MOGPE), the MOGPE Real-Time and the MOGPE High-Precision are proposed. Furthermore, a sim2real method based on domain randomization to diminish the reality gap and overcome the data shortage. Our methods yielded an 80% and a 96.67% success rate in a real-world robotic pick-and-place experiment, with the MOGPE Real-Time and the MOGPE High-Precision model respectively. Our framework provides an industrial tool for fast data generation and model training and requires minimal domain-specific data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.