Abstract

The Space Interferometry Mission (SIM) requires fringe measurements to the level of picometers in order to produce astrometric data at the micro-arc-second level. To be more specific, it is necessary to measure both the position of the starlight central fringe and the change in the internal optical path of the interferometer to tens of picometers. The internal path is measured with a small heterodyne metrology beam, whereas the starlight fringe position is estimated with a CCD sampling a large concentric annular beam. One major challenge for SIM is to align the metrology beam with the starlight beam to keep the consistency between these two sensors at the system level while articulating the instrument optics over the field of regard. The Micro-Arcsecond Metrology testbed (MAM), developed at the Jet Propulsion Laboratory, features an optical interferometer with a white light source, all major optical components of a stellar interferometer and heterodyne metrology sensors. The setup is installed inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. Astrometric observations are simulated by articulating the optics over the 15 degrees field of regard to generate multiple artificial stars. Recent data show agreement between the metrology and starlight paths to 20pm in the narrow angle field and to 350pm in the full wide angle field of regard of SIM. This paper describes the MAM optical setup, the observation process, the current data and how the performance relates to SIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.