Abstract

Obesity-induced insulin resistance is the principal cause of type 2 diabetes worldwide. The use of natural products for the treatment of diabetes is increasingly attracting attention. Silymarin (SLM) is a flavonolignan compound that has been shown to have promise for the treatment of diabetes. In the present study, we aimed to investigate the mechanisms underlying its therapeutic effects. C57BL/6 mice were fed a high-fat diet (HFD) for 12 weeks and then orally administered SLM (30 mg/kg) daily for 1 month. The effects of SLM were also investigated in HepG2 cells that had been rendered insulin resistant by palmitic acid (PA) treatment. SLM ameliorated the dyslipidemia, hepatic steatosis, and insulin resistance of the HFD-fed mice. HFD-feeding and PA treatment reduced the expression of sirtuin-1 (SIRT1) in the livers of the mice and in HepG2 cells, respectively. SLM increased the phosphorylation of AKT and FOXO1, and reduced the level of FOXO1 acetylation in PA-treated cells. However, SIRT1 knockdown by RNA interference reduced these effects of SLM. Moreover, the results of molecular dynamic simulation and in vitro activity assays indicated that SLM may directly bind to SIRT1 and increase its enzymatic activity. These findings suggest that hepatic SIRT1 may be an important pharmacological target of SLM and mediate effects on insulin resistance and gluconeogenesis, which may underlie its anti-diabetic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.