Abstract
Abstract We present a new catalog of 9318 Lyα emitter (LAE) candidates at z = 2.2, 3.3, 4.9, 5.7, 6.6, and 7.0 that are photometrically selected by the SILVERRUSH program with a machine learning technique from large area (up to 25.0 deg2) imaging data with six narrowband filters taken by the Subaru Strategic Program with Hyper Suprime-Cam and a Subaru intensive program, Cosmic HydrOgen Reionization Unveiled with Subaru. We construct a convolutional neural network that distinguishes between real LAEs and contaminants with a completeness of 94% and a contamination rate of 1%, enabling us to efficiently remove contaminants from the photometrically selected LAE candidates. We confirm that our LAE catalogs include 177 LAEs that have been spectroscopically identified in our SILVERRUSH programs and previous studies, ensuring the validity of our machine learning selection. In addition, we find that the object-matching rates between our LAE catalogs and our previous results are ≃80%–100% at bright NB magnitudes of ≲24 mag. We also confirm that the surface number densities of our LAE candidates are consistent with previous results. Our LAE catalogs will be made public on our project webpage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.