Abstract

Colored cotton fabrics with satisfactory color fastness as well as durable antibacterial and self‐healing superhydrophobic properties are fabricated via a convenient solution‐dipping method that involves the sequential deposition of branched poly(ethylenimine) (PEI), silver nanoparticles (AgNPs), and fluorinated decyl polyhedral oligomeric silsesquioxane (F‐POSS) on cotton fabrics. The deposited AgNPs with tunable surface plasmon resonance endow the cotton fabrics with abundant color and and antibacterial ability. However, in general, water‐soluble AgNPs cannot be firmly deposited onto cotton fabrics to endure the laundering process. The integration of self‐healing superhydrophobicity into the cotton fabrics by depositing F‐POSS/AgNP/PEI films significantly enhances the color fastness of the AgNPs against laundry and mechanical abrasion, while retaining the antibacterial property of the AgNPs. The F‐POSS/AgNP/PEI‐coated cotton fabric accommodates an abundance of F‐POSS, which autonomically migrates to the cotton surface to repetitively restore its damaged superhydrophobicity. The self‐healing superhydrophobicity of the F‐POSS/AgNPs/PEI‐coated cotton fabric guarantees long‐term protection of the underlying AgNPs against laundry and abrasion and allows the cotton fabric to be cleaned by simple rinsing with water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.