Abstract

ZnO nanoparticles were successfully synthesized by a controlled precipitation procedure by mixing aqueous solutions of Zn(II) acetate and dissolved Na2CO3 at pH ca. 7.0 without template addition and ulterior calcination at 400 °C for 2 h. The Ag-ZnO catalysts (ranging from 0.5 to 10 Ag wt.-%) were obtained by photochemical deposition method at the surface of the prepared ZnO sample, using AgNO3 as precursor. The as-prepared catalysts (with and without silver) were characterized by XRD, BET, FE-SEM, TEM, and XPS and diffuse reflectance spectroscopy (DRS). The effect of Ag-phodeposition on the photocatalytic properties of ZnO nanoparticles was investigated. Three different probe molecules were used to evaluate the photocatalytic properties under UV-illumination and visible illumination: Methyl Orange and Rhodamine B were chosen as hazardous dyes and Phenol as a transparent substrate. For each of the chosen substrates, it was observed that the UV-photocatalytic properties of ZnO improved with the amount of Ag deposited, up to an optimum percentage around 1–5 wt.-% Ag, being even better than the commercial Evonik-TiO2(P25) in the same conditions. Above this amount, the UV-photocatalytic properties of the Ag-ZnO samples remain unchanged, indicating a maximum for Ag-deposition. While ZnO and Ag-ZnO catalysts can photodegrade Rhodamine B, Methyl Orange and Phenol totally within 60 min under UV-illumination, the process is slightly faster for the case of Ag–ZnO nanoparticles. Under Vis-illumination, the silver-metalized samples did not present photocatalytic activity in the degradation of Methyl Orange. However, a very low photoactivity was present for phenol degradation (10% conversion) and a moderate conversion of ca. 70% for Rhodamine B degradation, after 120 min of Visible-illumination. High conversion values and a total organic carbon (TOC) removal of 86–97% were obtained over the Ag-ZnO photocatalysts after 120 min of UV-illumination, suggesting that these Ag-modified ZnO nanoparticles may have good applications in wastewater treatment, due to its reuse properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.