Abstract

A conceptually novel catalytic domino approach is presented for the synthesis of highly functional 1,4-dihydro-2H-1,3-benzoxazine-2-one derivatives. Key to the chemoselectivity is a proper design of the precursor to override thermodynamically favored parasitic cyclization processes and empower the formation of the desired product through Thorpe-Ingold effects. The synthetic diversity of these CO2 -based heterocycles is further demonstrated, and the isolation of a reaction intermediate supports an unusual ring-expansion sequence from an α-alkylidene, five-membered cyclic carbonate to a six-membered cyclic carbamate by N-induced isomerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call