Abstract

DNA sequences comprising noncanonical 7-deazaguanine (7C G) and canonical cytosine (C) are capable of forming Watson-Crick base pairs via hydrogen bonds as well as silver(I)-mediated base pairs by coordination to central silver(I) ions. Duplexes I and II containing 7C G and C have been synthesized and characterized. The incorporation of silver(I) ions into these duplexes has been studied by means of temperature-dependent UV spectroscopy, circular dichroism, and DFT calculations. The results suggest the formation of DNA molecules comprising contiguous metallated 7C G-AgI -C Watson-Crick base pairs that preserve the original B-type conformation. Furthermore, additional studies performed on duplex III indicated that, in the presence of AgI ions, 7C G-C and 7C A-T Watson-Crick base pairs (7C A, 7-deazadenine; T, thymine) can be converted to metallated 7C G-AgI -C and 7C A-AgI -T base pairs inside the same DNA molecule whilst maintaining its initial double helix conformation. These findings are very important for the development of customized silver-DNA nanostructures based on a Watson-Crick complementarity pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call