Abstract

The silver(I) coordination chemistry of 2,6-diarylpyrazines is reported. Discrete coordination complexes and two-dimensional coordination networks were characterized. The substitution pattern on the pendant aryl groups controlled the type of coordination chemistry involved. Thus, o-methyl-substituted aryl groups held the aryl groups orthogonal to the central pyrazine ring, opening the "hindered" nitrogen atoms to complexation, and polymeric networks were characterized. In the absence of the o-methyl groups, discrete coordination complexes were characterized. Thus, a dimeric 2:1 ligand-silver(I) complex was isolated and characterized on reaction of 2,6-bis(3',5'-dimethylphenyl)pyrazine with silver(I) trifluoroacetate in acetonitrile solvent, while a 2:2 complex was isolated from dichloromethane solvent. Two trifluoroacetate ligands bridge two silver cations in both complexes. Reaction of the same pyrazine ligand with silver(I) tetrafluoroborate yielded a discrete 2:1 complex. A 2:1 complex was isolated on reaction of 2,6-diphenylpyrazine with silver(I) nitrate. These complexes were interlinked by weakly coordinating nitrate anions to form interwoven one-dimensional ribbons. Two-dimensional networks were obtained on reaction of silver(I) trifluoroacetate with either 2,6-bis(2',6'-dimethylphenyl)pyrazine or 2-(2',6'-dimethylphenyl)-6-(3',5'-dimethylphenyl)pyrazine. The networks comprised pyrazine-silver(I) strands cross-linked with complex bridged silver(I) trifluoroacetates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.