Abstract
Recently, nanoscale metallic particles have been studied extensively due to their tunable and strong optical properties that are well beyond those of organic chromophores. As monometallic nanoparticles have shown strong but narrow absorption bands within the ultraviolet and visible wavelengths, the preparation of bimetallic core-shell structures can give rise to strong, wide, and tunable absorption bands across the visible to near infrared areas. The silver-gold bimetallic nanoparticles with core-shell structures can offer unique physical and optical properties inaccessible to monometallic systems. These nanoparticles have been utilized in many areas of research including chemical catalysis, surface-enhanced Raman spectroscopy, and photothermal therapy. This review article is a comprehensive overview of bimetallic nanoparticle systems consisting of gold and silver; it is based on the recent advances in wet-chemical synthetic methodologies, the characterization of size and shape-dependent optical properties, and various optically driven applications including catalysis, signal-enhancing devices, and biomedical purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.