Abstract

This paper reports the preparation of a type of Ag-embedded zeolite crystals as surface-enhanced Raman spectroscopy (SERS) substrates by chemical reduction of Ag+-exchanged ZSM-5. Ag+ ions were loaded into the zeolite framework by ion exchange. Then the exchanged-Ag+ ions were reduced and metallic silver clusters formed inside the zeolite channel. The resulting Ag-embedded zeolite crystals are characterized by using a number of techniques including X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy to confirm silver formed inside the crystal channel. The fabricated Ag-embedded ZSM-5 zeolite substrates displayed strong and reproducible SERS activity for different Raman probe molecules such as Tris(2,2′-bipyridyl) ruthenium(II) chloride (RuBpy) and rhodamine 6G (R6G). Since silver embedded into the zeolite channel without changing the crystal surface property, the Ag–ZSM-5 zeolite crystal can be used to prepare different SERS-active substrate (SERS-tags), in which different probe molecules may be detected. Such Ag-embedded zeolite substrate would be useful in chemical and biological sensing and in the development of SERS-based analytical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.