Abstract
Small drug molecules are widely developed and used in the pharmaceutical industry. In the past few years, loading and delivering such molecules using polymer-shell colloidosomes has attracted interest. Traditional polymer capsules fail to encapsulate low-molecular-weight materials for long times, since they are inherently porous and permeable for small molecules. In this paper, we report a method for encapsulating an anticancer drug with small molecule weight, for cell viability tests. The silver-coated colloidosomes are prepared by making an aqueous core capsule with a polymer shell and then adding AgNO3, surfactant, and l-ascorbic acid to form a second shell. The capsules are impermeable and can be triggered using ultrasound. We propose to use the capsules as drug carriers. The silver demonstrates a low cytotoxicity for up to 10 capsules per cell. After the silver shells are triggered by ultrasound, the released doxorubicin, the broken silver fragments, and the doxorubicin loading on the capsule surface all kill cells. The results demonstrate a nonpermeable silver-shell microcapsule with ultrasound sensitivity for potential medical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.