Abstract

Silver(I) salts of weakly coordinating anions (WCA) are commonly applied as oxidizing agents or halide abstracting reagents. The feasibility of a particular silver salt for such applications strongly depends on the “nakedness“ of the silver cation. In this study the reactivity of Ag[Me3NB12Cl11] in different solvents was investigated. Crystal structures of a variety of complexes were obtained. In several crystal structures two boron clusters are bridged by Ag–Cl contacts. This leads to polymeric structures (e.g. for Ag[Me3NB12Cl11]·0.5CH2Cl2 and Ag[Me3NB12Cl11]·SO2). Sterically demanding aromatics like mesitylene, pyrene, and acenaphthene are η1‐ or η2‐bonded to the silver atom and also form coordination polymers, whereas benzene as a ligand leads to a molecular structure, in which two benzene molecules are η2‐coordinated to the silver cation. In contrast, strong σ donor ligands like pyridine and triphenylphosphine give homoleptic silver complexes and thus cation and anion are separated. Furthermore, the ability of Ag[Me3NB12Cl11] for performing metathesis reactions was investigated. The reaction with AuICl gave the [Au(NCMe)2]+ cation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call