Abstract

The aim of the present study is to evaluate the antioxidant and proapoptotic effects of silver–palm pollen (Ag/PP) nanocomposite. The percentage of live cells after treatment with various concentrations of Ag/PP (0, 5, 10, 20, and 40 µM/mL) was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The antioxidant potential of Ag/PP was measured via the scavenging effects of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and molecular analysis. Apoptosis was assessed by morphological analysis, fluorescent dye, and flow cytometry, and its fundamental mechanism studied based on evaluation of Bax and Bcl2 gene expression. Ag/PP nanocomposite suppressed the viability of MCF-7 cells (dose and time dependently) and showed antioxidant properties. Morphological changes associated with cell death were observed in treated cells. Accumulation of dead cells in sub-G1 phase confirmed the occurrence of apoptosis in exposed cells. In addition, NPs induced cell death by altering Bcl-2 expression in MCF-7 cells. These results indicate that Ag/PP nanocomposite is an effective combination for removal of cancer cells by induction of apoptosis and could be useful for human health due to its antioxidant effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call