Abstract

Three types of silver/reduced graphene oxide (Ag/rGO) nanocomposites (one doped with nitrogen and another two without) are synthesized to investigate their atomic structures and the oxygen reduction reaction (ORR) performance with them as the electrocatalysts. For the first time, the bonding interaction between Ag and N in N doped rGO (N-rGO) is confirmed by both high resolution X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman spectroscopy (SERS). The Ag/N-rGO shows excellent ORR performance, including very high onset potential and current density, which outperforms those Ag/rGOs without N doping. Detailed electrochemical analysis shows that the ORR mechanism on Ag/N-rGO is different from both Ag and N-rGO, and its excellent performance is caused by the Ag–N bonding which alters the electronic structure of N-rGO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.