Abstract

Designing and fabricating highly efficient oxygen evolution reaction (OER) electrocatalytic materials for water splitting is a promising and practical approach to green and sustainable low-carbon energy systems. Herein, a facile in situ growth self-template strategy by using ZIF-67 as a consumable layered double hydroxides (LDHs) template and silver nanowires (AgNWs) as 1D conductive cascaded substrate to controllably synthesize the target AgNWs@CoFe-LDH composites with unique hollow shell sugar gourd-like structure and enhanced directional electron transport effect is reported. The AgNWs exhibit the key functions of the close connection of CoFe-LDH nanocages and the support of the directional electron transport effect in the composite catalyst inducing electrons directionally moving from CoFe-LDH to AgNWs. Meanwhile, the CoFe-LDH nanocages with ultrathin nanosheets and hollow structural properties show abundant active sites for electrocatalytic oxygen generation. The versatile AgNWs@CoFe-LDH catalyst with optimized components, enhanced directional electron transport, and synergistic effect achieves high OER performance with the overpotential of 207 mV and long-term 50 h stability at 10 mA cm-2 in an alkaline medium. Moreover, in-depth insights into the microstructure, structure-activity relationships, identification of key intermediate species, and a proton-coupled four-electron OER mechanism based on experimental discovery and theoretical calculation are also demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call