Abstract
Herein, we reported a facile method to control the nanogap distance of silver (Ag) nanosheets to obtain high sensitive plasmonic Surface-enhanced Raman scattering (SERS) substrates. The sulfonated polystyrene (SPS) microspheres with different diameters were first fabricated using micro-emulsion synthesis, and then the SPS microspheres were coated with Ag nanosheets through chemical synthesis with citric acid/ascorbic acid to form Ag nanosheets@SPS (Ag@SPS) substrates with different nanogap distances. The results showed that the nanogap distance of Ag nanosheets self-assembled on SPS microspheres reduced from 80-150 nm to 28–68 nm when the diameter of SPS microspheres increased from 0.9 to 3.5 μm, and the enhancement factor (EF) increased from 105 to 107, the limit of detection of rhodamine 6G (R6G) for the Ag@SPS microspheres reduced from 10−10 to 10−13 mol/L. It confirmed that the Ag nanosheets coated on the surface of SPS microspheres could achieve ultra trace detection of analyte. Furthermore, the low concentration detection limit for melamine with the Ag@SPS microspheres substrate was about 10−8 mg/L, which is lower than the standard legislated by the European Union and the Food & Drug Administration. In addition, the SERS spectrum of 3-mercaptopropionic acid (3-MPA) could be also detected when its concentration was 10−8 mol/L. The prepared substrate offered a promising opportunity for SERS practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.