Abstract

Shape-controlled synthesis of metal nanostructures has opened many new possibilities to design ideal building blocks for future nanodevices. In this work, new types of monodisperse silver nanoplates with complex shapes, namely, a disklike shape and flowerlike shapes, were controllably synthesized in high yield by reducing [Ag(NH3)2]+ with ascorbic acid in the presence of silver seed at room temperature. Unlike previous methods for synthesizing the silver nanoplates in the presence of cetyltrimethylammonium bromide (CTAB) micelles, the use of the precursor [Ag(NH3)2]+, other than Ag+, provides a flexible strategy to control the procession of the reduction reaction in a mild way. These silver nanoplates with shapes of disk and flower were shown to possess surface plasmon resonance (SPR) that directly relates to their geometric shapes. As a result of their high anisotropy in shape, the flowerlike silver nanoplates exhibit excellent surface-enhanced Raman scattering (SERS) enhancement ability relative to sphe...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call