Abstract

Biofilms are thought to be sinks for antibiotic resistance genes (ARGs) and nanoparticles (NPs), however, studies on the interactions between NPs and ARGs in biofilms are limited. This study focused on the occurrence and regulatory mechanisms of ARGs during the formation of biofilms with continuous treatment of zero-valent silver nanoparticles (Ag0-NPs) and Ag ions at an environmental concentration of 10 µg/L in the Yangtze Estuary. The biofilms could enrich large amounts of Ag, with the highest concentration of 97.60 mg/kg and 111.08 mg/kg in the Ag0-NPs and Ag ions group at 28 days. Compared to the blank at 28 days, the abundance of ARGs was reduced 2.2 times in the Ag0-NPs group, whereas it increased 1.3 times in the Ag ion group. Ag0-NPs and Ag ions induced the production of silver resistance genes (SRGs) or selected bacteria with SRGs in biofilms. Based on machine learning, the bacterial community, SRGs, and Ag concentration were the top three dominant regulators of ARGs, with 27.74 %, 25.57 %, and 17.93 % contributions, respectively. Structural equation modeling revealed that Ag could indirectly regulate ARGs by regulating the bacterial community in the Ag0-NPs group. Metagenomic sequencing further showed that most of the decreased ARGs were hosted by Betaproteobacteria in the Ag0-NPs groups. According to the KEGG pathway database, the possible molecular mechanism of Ag0-NPs/Ag ions regulating ARGs may be through the two-component system (arlS/silS-arlR) and beta-lactam resistance system (mexI-mexV-oprM/oprZ/smeF). Overall, this study provides new insights into the effects of Ag0-NPs at environmental concentrations on the ecological environment, especially regarding the mechanism of regulating ARGs in estuarine biofilms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.