Abstract

Silver nanoparticles (AgNPs) are widely used in health and consumer products that routinely contact skin. However, the biological effects and possible mechanisms of AgNPs on skin remain unclear. Gap junctional intercellular communication (GJIC) plays a critical role in multicellular organisms to maintain tissue homeostasis. The aim of this study is to examine if non-coated AgNPs affect GJIC in human keratinocytes (HaCaT cells), and to identify the possible molecular mechanisms responsible for the effects. GJIC, connexin (Cx)43 protein and mRNA expression, and the effect of siRNA-mediated knockdown of Cx43 on GJIC were assessed. HaCaT cells exposed to non-coated AgNPs at different doses after a 24hour exposure. To explore further the underlying mechanism, reactive oxygen species and mitogen-activated protein kinase pathway were evaluated after 2, 6, 12 and 24hours. Our results revealed that non-coated AgNP exposure at subcytotoxic doses increase GJIC partially via Cx43 upregulation. Reactive oxygen species and extracellular signal-regulated kinase and activation of c-Jun N-terminal kinase were involved in the AgNP-induced upregulation of Cx43. This study provides new insight into the potential mechanism of AgNP biological activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.