Abstract

A novel two-layer reinforced carbon fiber (CF), i.e., Ag nanoparticles (Ag NPs)/graphene oxide (GO) reinforced CF (named as CF/Ag/GO) was prepared by an electrochemical deposition and electrophoretic deposition (EPD) consequently. The modified fiber showed an increased interfacial shear strength (IFSS) and tensile strength. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectrometer, atomic force microscopic (AFM) and dynamic contact angle analysis (DCA) were carried out to investigate CF reinforced composites. And test results demonstrated that the presence of Ag NPs and GO sheets increased the surface roughness and surface energy of CFs significantly. IFSS of CF/epoxy and the tensile strength of CFs were increased by 86.1% and 36.8%, respectively. Ag NPs filled in the cracks in CF effectively to enhance the tensile strength, while GO sheets improved the wettability of resin on CFs and formed mechanical interlocking between CFs and epoxy resin. These Ag NPs and GO sheets worked together in a ferocious synergy on the interface of CF and epoxy to cause the enhanced mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call