Abstract

Overuse of antimicrobials by the population has contributed to genetic modifications in bacteria and development of antimicrobial resistance, which is very difficult to combat nowadays. To solve this problem, it is necessary to develop new systems for the administration of antimicrobial active principles. Biocomposite systems containing silver nanoparticles can be a good medical alternative. In this context, the main objective of this study was to obtain a complex system in the form of a biocomposite film with antimicrobial properties based on chitosan, poly (vinyl alcohol) and silver nanoparticles. This new system was characterized from a structural and morphological point of view. The swelling degree, the mechanical properties and the efficiency of loading and release of an anti-inflammatory drug were also evaluated. The obtained biocomposite films are biocompatibles, this having been demonstrated by in vitro tests on HDFa cell lines, and have antimicrobial activity against S. aureus. The in vivo tests, carried out on rabbit subjects, highlighted the fact that signs of reduced fibrosis were specific to the C2P4.10.Ag1-IBF film sample, demonstrated by: intense expression of TNFAIP8 factors; as an anti-apoptotic marker, MHCII that favors immune cooperation among local cells; αSMA, which marks the presence of myofibroblasts involved in approaching the interepithelial spaces for epithelialization; and reduced expression of the Cox2 indicator of inflammation, Col I.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call