Abstract

In the present study, pyroligneous acid, also known as wood vinegar, has been employed as reducing and stabilizing agent in the synthesis of silver nanoparticles (AgNPs) anchored on nanocellulose (NC). The idea is to confer the latter bactericidal properties for its typical uses such as in cosmetics and food-packing. It has been demonstrated that AgNPs can be directly produced onto NC in one-pot fashion while dramatically enhancing the kinetics of AgNPs synthesis (2 h for reaction completion) in comparison to the NC-less counterpart (10 days for reaction completion). Furthermore, NC allowed for a narrower size distribution of AgNPs. NC-supported and non-supported AgNPs had sizes of 5.1 ± 1.6 nm and 16.7 ± 4.62 nm, respectively. Immortalized human keratinocytes (HaCat) cells were then employed as model to evaluate the cytotoxicity of the AgNPs-NC compound. The latter was found not to impact cell proliferation at any formulation, while decreasing the viability by only 6.8% after 72 h. This study contributes to the development of more environmentally benign routes to produce nanomaterials and to the understanding of their impact on cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.