Abstract

Azo dyes are commonly used in textile color processing for their wide array of vibrant colors. However, in recent years these dyes have become of concern in wastewater management given their toxicity to humans and the environment. In the present work, researchers remediated water contaminated with azo dyes using silver nanoparticles (Ag NPs) intercalated within cotton fabric as a catalyst, for their enhanced durability and reusability, in a reductive degradation method. Three azo dyes—methyl orange (MO), Congo red (CR), and Chicago Sky Blue 6B (CSBB)—were investigated. The azo degradation was monitored by UV/vis spectroscopy, degradation capacity, and turnover frequency (TOF). The Ag NP–cotton catalyst exhibited excellent degradation capacity for the dyes, i.e., MO (96.4% in 30 min), CR (96.5% in 18.5 min), and CSBB (99.8% in 21 min), with TOFs of 0.046 min−1, 0.082 min−1, and 0.056 min−1, respectively, using a 400 mg loading of catalyst for 100 mL of 25 mg L−1 dye. To keep their high reusability while maintaining high catalytic efficiency of >95% degradation after 10 cycles, Ag NPs immobilized within cotton fabric have promising potential as eco-friendly bio-embedded catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.