Abstract
Noble metal nanoparticles show pronounced extinction peaks in the visible wavelength range due to their localized surface plasmon resonances. The excitation of these resonances leads to strong confinement of electromagnetic energy at nanometer scales, which is critical for ultrasensitive, fluorescence-based detection of analytes. The strength and spatial distribution of this near-field zone depend on particle size, shape, and composition. To determine how these near-field effects depend on the particle size, we have prepared nanoparticle gradients on centimeter-scale substrates using a colloid-based approach. This plasmonic gradient is used to study the steady-state emission and fluorescence lifetime of a common organic dye that was embedded into the monolayer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.