Abstract

There is a wide spectrum of malignant diseases that are connected with the clonal proliferation of plasma cells, which cause the production of complete immunoglobulins or their fragments (heavy or light immunoglobulin chains). These proteins may accumulate in tissues, leading to end organ damage. The quantitative determination of immunoglobulin free light chains (FLCs) is considered to be the gold standard in the detection and treatment of multiple myeloma (MM) and amyloid light-chain (AL) amyloidosis. In this study, a silver nanoparticle-based diagnostic tool for the quantitation of FLCs is presented. The optimal test conditions were achieved when a metal nanoparticle (MNP) was covered with 10 particles of an antibody and conjugated by 5–50 protein antigen particles (FLCs). The formation of the second antigen protein corona was accompanied by noticeable changes in the surface plasmon resonance spectra of the silver nanoparticles (AgNPs), which coincided with an increase of the hydrodynamic diameter and increase in the zeta potential, as demonstrated by dynamic light scattering (DLS). A decrease of repulsion forces and the formation of antigen–antibody bridges resulted in the agglutination of AgNPs, as demonstrated by transmission electron microscopy and the direct formation of AgNP aggregates. Antigen-conjugated AgNPs clusters were also found by direct observation using green laser light scattering. The parameters of the specific immunochemical aggregation process consistent with the sizes of AgNPs and the protein particles that coat them were confirmed by four physical methods, yielding complementary data concerning a clinically useful AgNPs aggregation test.

Highlights

  • Multiple myeloma, the second most common hematologic malignancy, is characterized by the clonal proliferation of plasma cells, their prolonged survival, and the accumulation of clonal plasma cells in bone marrow

  • The second most common hematologic malignancy, is characterized by the clonal proliferation of plasma cells, their prolonged survival, and the accumulation of clonal plasma cells in bone marrow. It is accompanied by the presence of monoclonal immunoglobulin and immunoglobulin free light chains (FLCs) in the serum, urine, or both

  • FLCs or their deposits may accumulate in tissues, leading to end organ damage

Read more

Summary

Introduction

The second most common hematologic malignancy, is characterized by the clonal proliferation of plasma cells, their prolonged survival, and the accumulation of clonal plasma cells in bone marrow. It is accompanied by the presence of monoclonal immunoglobulin and immunoglobulin free light chains (FLCs) in the serum, urine, or both. The most common clinical manifestations of symptomatic multiple myeloma are anemia, infections, lytic or osteopenic bone disease, and renal failure [1,2] Another disease associated with immunoglobulin free light chains is amyloidosis. Deposits of amyloid fibrils lead to an impaired function of affected organs

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call