Abstract

The main core of wound treatment is cell growth and anti-infection. To accelerate the proliferation of fibroblasts in the wound and prevent wound infections, various strategies have been tried. It remains a challenge to obtain good cell proliferation and antibacterial effects. Here, human hair kerateine (HHK)/poly(ethylene oxide) (PEO)/poly(vinyl alcohol) (PVA) nanofibers were prepared using cysteine-rich HHK, and then, silver nanoparticles (AgNPs) were in situ anchored in the sulfur-containing amino acid residues of HHK. After the ultrasonic degradation test, HHK/PEO/PVA nanofibrous mats treated with 0.005-M silver nitrate were selected due to their relatively complete structures. It was observed by TEM-EDS that the sulfur-containing amino acids in HHK were the main anchor points of AgNPs. The results of FTIR, XRD and the thermal analysis suggested that the hydrogen bonds between PEO and PVA were broken by HHK and, further, by AgNPs. AgNPs could act as a catalyst to promote the thermal degradation reaction of PVA, PEO and HHK, which was beneficial for silver recycling and medical waste treatment. The antibacterial properties of AgNP-HHK/PEO/PVA nanofibers were examined by the disk diffusion method, and it was observed that they had potential antibacterial capability against Gram-positive bacteria, Gram-negative bacteria and fungi. In addition, HHK in the nanofibrous mats significantly improved the cell proliferation of NIH3T3 cells. These results illustrated that the AgNP-HHK/PEO/PVA nanofibrous mats exhibited excellent antibacterial activity and the ability to promote the proliferation of fibroblasts, reaching our target applications.

Highlights

  • Keratins, a family of fibrous proteins, are abundant in fibers and hard biostructures.A high level of cysteine residues (7–20 mol%) in the peptide chain of keratin form many intermolecular and intramolecular disulfide bonds in their natural form

  • Nanofibers need to be resistant to chemical and physical degradation during usage, so the degradation resistance of AgNP-human hair kerateine (HHK)/poly(ethylene oxide) (PEO)/poly(vinyl alcohol) (PVA) nanofibers treated with different

  • Degradation Resistance of AgNP-HHK/PEO/PVA Nanofibers so the degradation resistance of AgNP-HHK/PEO/PVA nanofibers treated with different AgNO3 concentrations was firstly investigated

Read more

Summary

Introduction

A family of fibrous proteins, are abundant in fibers and hard biostructures.A high level of cysteine residues (7–20 mol%) in the peptide chain of keratin form many intermolecular and intramolecular disulfide bonds in their natural form. Keratins contain cell adhesion motifs similar in structure to extracellular matrix proteins (such as collagen or fibronectin), arginine-glycine-aspartate (RGD) and leucine-aspartate-valine (LDV), which can support cell attachment and proliferation [5]. These unique structures and biological properties make keratin the focus of the biomedical field, including wound dressing, tissue engineering and drug delivery [6,7,8,9,10,11,12]. The shortcomings of brittleness, poor mechanical properties and processing properties limit the practical use of keratin [13,14]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call