Abstract

A fluxless bonding process is successfully developed between silicon (Si) chips and copper (Cu) substrates using the silver-indium (Ag-In) binary system. This is a new design concept that utilizes thick Ag plated over the Cu substrate to deal with the large mismatch in coefficient of thermal expansion between semiconductors, such as Si (3 ppm/°C) and Cu (17 ppm/°C). The Ag layer actually becomes a part of the Ag-Cu substrate. Ag is chosen for the cladding because of its superior physical properties of ductility, high electrical conductivity, and high thermal conductivity. Following the thick Ag layer, 5 μm In and 0.1 μm Ag layers are plated. The thin outer Ag layer inhibits oxidation of inner In. After many bonding experiments, we realize that the success of producing a joint relates to the microstructure of the Ag layer. Ag with small grains results in rapid growth of solid Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> In intermetallic compounds through grain boundary diffusion. Thus, a joint is not obtained because of lack of molten phase (L). To coarsen Ag grains, an annealing step is added to the Ag-plated Cu substrate. This step makes Ag grains 200 times coarser compared to the as-plated Ag. The coarsened microstructure slows down the Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> In growth. Consequently, the (L) phase stays at the molten state with sufficient time to react with the Ag layer on the Si chip to produce a joint. Nearly perfect joints are produced on Ag-plated Cu substrates. The resulting joints consist of pure Ag, Ag-rich solid solution, Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> In, and Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> In. The melting temperature exceeds 650 °C. Using the present process, high temperature joints of high thermal conductivity are made between Si chips and Cu substrates at low bonding temperature (200°C). We foresee the Ag-In system as an important system to explore for various fluxless bonding applications in electronic packaging. This system provides the possibilities of producing joints of wide composition choices and wide melting temperature range. This paper provides preliminary but useful information on how the microstructure of Ag affects the bonding results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.