Abstract

Silver (Ag) is used in a wide range of industries including healthcare, food, cosmetics, and environmental industries due to its antibacterial properties. The rapidly expanding use of Ag has raised issues concerning its toxicity in humans. However, studies investigating the effects of Ag on humans are very limited, and the combined effects of Ag and other environmental factors have not yet been determined. Ultraviolet (UV) radiation in sunlight is the most prominent and ubiquitous physical stressor in our natural environment. In this study, we investigated the genotoxic potential of combined exposure to Ag(+) (AgNO3) and UVB in the human keratinocyte cell line, HaCaT, by measuring the generation of phosphorylated histone H2AX, which is currently attracting attention as a biomarker for the detection of genotoxic insults. We found that the generation of γ-H2AX was synergistically enhanced when cells were coexposed to Ag(+) and UVB. Furthermore, we showed that the enhanced generation of γ-H2AX could be attributed to the increased formation of UVB-induced cyclobutane pyrimidine dimers and (6-4) photoproducts. These lesions, if not repaired properly, are the major causal factor for skin carcinogenesis. Our results provide an important insight into influence of Ag on the genotoxic potency of sunlight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.