Abstract

Various double-decker porphyrins accommodating rare earth elements (Sm, Tb, Y) were investigated as ionophores in potentiometric ion sensors. The studied ion-selective electrodes based on double-decker porphyrins were primarily selective to Ag+ ions. The experimentally derived selectivity coefficients were compared to theoretical predictions based on density functional theory (DFT) calculations of the metal-binding energies (ΔE) of double-decker porphyrin-metal ion complexes. Although DFT calculations were performed in vacuo, without taking into account ion-solvent and ion-membrane interactions, this computational approach showed relatively good correlation with the experimentally observed selectivity patterns of the ion-selective electrodes. Thus, DFT calculations were found to be a useful predictive tool when designing new ionophores for ion-selective electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.