Abstract

Fifteen new silver(I)-pyridinyl complexes of the general formula [AgL2]X, where X = ClO4−, OTf or NO3−, were synthesised by reacting (E)-N-(pyridinylmethylene)aniline ligands and the respective silver(I) salts namely AgClO4, AgOTf, or AgNO3. The ligands were obtained by neat grinding of 2- or 4-pyridincarboaxaldehyde together with aniline, 2,6-dimethylaniline or 2,6-diisopropylaniline. The obtained (E)-N-(pyridinylmethylene)aniline ligands were further reacted with respective silver(I) salts in a 2:1 ratio in anhydrous ethanol at room temperature under inert atmosphere using the Schlenk techniques. Chemical structures of complexes were identified by nuclear magnetic resonance, electrospray ionization mass spectrometry, elemental analysis, infrared spectroscopy and some by single-crystal X-ray diffraction analysis. Reactions involving the 2-pyridinyl derivatives resulted in cationic complexes in which two ligands chelate silver(I) centres through the pyridinyl N and imine N atoms, with the counter anion out of the coordination sphere. The 4-pyridinyl derivatives conversely gave complexes in which two ligands coordinate to the silver(I) centre through their pyridinyl N atoms only, most likely a linear fashion. The newly synthesised silver(I) complexes and the free ligands were evaluated for their in vitro antimicrobial activity against Escherichia coli, Salmonella typhimirium, Staphylococcus aureus and Candida albicans. The complexes showed varied growth inhibitory activity against the test organisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.