Abstract

In our efforts to investigate the coordination architectures of transition metals and organic ligands with tailored structures, we have prepared two structurally related rigid bulky acridine-based ligands, 9-[3-(2-pyridyl)pyrazol-1-yl]- acridine (L(1)) and 9-(1-imidazolyl)acridine (L2), and synthesized and characterized four of their Ag(I) complexes, {[AgL1](ClO4)}2 (1), {[AgL1](NO3)}2 (2), [AgL2(2)](ClO4) (3), and {[(Ag3L2(3))(NO3)](NO3)2(H2O)}(infinity) (4). The single-crystal X-ray diffraction analysis shows that the structures of 1 and 2 are similar to each other, with the two intramolecular Ag(I) centers of each complex being encircled by two L1 ligands; this forms a unique boxlike cyclic dimer, which is further linked to form one-dimensional (1D) chains of 1 and a two-dimensional (2D) network of 2 by intermolecular face-to-face pi...pi stacking and/or weak C-H...O hydrogen-bonding interactions, respectively. 3 has a mononuclear structure, which is further assembled into a 2D network via intermolecular Ag...O and pi...pi stacking weak interactions. 4 possesses two different 1D motifs that are further interlinked through interlayer face-to-face pi...pi stacking and Ag...O weak interactions, resulting in a 2D network. It is worth noting that one of the interesting structural features of 1, 2, and 4 is the presence of obvious C-H...M hydrogen-bonding interactions between the Ag centers and some acridine ring H atoms identified by X-ray diffraction on the basis of the van der Waals radii. Furthermore, as a representative example, full geometry optimization on the basis of the experimental structure, the natural bond orbital (NBO), and topological analysis of 1 were carried out by DFT and AIM (Atoms in Molecules) calculations. The total C-H...Ag interaction energy in 1 is estimated to be about 14 kJ/mol. Therefore, this work offers three new rare examples (1, 2, and 4) that exhibit C-H...Ag weak interactions, in which the N donors of the acridine rings coordinate to Ag(I) ions. Also, these results strongly support the existence of C-H...Ag close interactions and allow us to have a better understanding of the nature of such interactions in the coordination supramolecular systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.