Abstract
Bio-directed synthesis of metal nanoparticles is gaining importance due to their biocompatibility, low toxicity and eco-friendly nature. We used sweet sorghum syrup for a facile and cost-effective green synthesis of silver glyconanoparticles. Silver nanoparticles were formed due to reduction of silver ions when silver nitrate solution was treated with sorghum syrup solutions of different pH values. The nanoparticles were characterized by UV–vis, TEM (transmission electron microscopy), DLS (dynamic light scattering), EDAX (energy dispersive X-ray spectroscopy), FT-IR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction spectroscopy). The silver glyconanoparticles exhibited a characteristic surface plasmon resonance around 385nm. At pH 8.5, the nanoparticles were mono-dispersed and spherical in shape with average particle size of 11.2nm. The XRD and SAED studies suggested that the nanoparticles were crystalline in nature. EDAX analysis showed the presence of elemental silver signal in the synthesized glyconanoparticles. FT-IR analysis revealed that glucose, fructose and sucrose present in sorghum syrup acted as capping ligands. Silver glyconanoparticles prepared at pH 8.5 had a zeta potential of −28.9mV and were anionic charged. They exhibited strong antimicrobial activity against Gram-positive, Gram-negative and different Candida species at MIC values ranging between 2 and 32μgml−1. This is first report on sweet sorghum syrup sugars-derived silver glyconanoparticles with antimicrobial property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.