Abstract

AbstractIn the present analysis, our aim is to investigate the mass and heat transport of silver (Ag)–ethylene glycol (EG) and copper (Cu)–EG‐based nanofluids between two rotating stretchable disks under the convective boundary conditions. We have also incorporated Cattaneo–Christov heat flux, thermal radiation, and chemical reaction in the fluid flow. The system of coupled partial differential equations is transformed into ordinary differential equations by using similarity transformations. The finite element method has been accomplished to find numerical solutions to transformed equations. The behavior of radial and tangential velocity, temperature fields, and concentration fields influenced by the various parameters are sketched through graphs. The local skin friction coefficient, Nusselt number, and Sherwood number are also calculated for the pertinent parameters and displayed the results through tables. It is perceived that velocity sketches of both nanoliquids degenerate with larger values of thermal relaxation parameters. Also, the values local Nusselt number of both Ag–EG, and Cu–EG based Cattaneo–Christov nanofluid intensifies with improving values of stretching parameter at the lower disk, whereas, it impedes at the upper disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call