Abstract

A series of silver coordination complexes (CCs) have been synthesized through self-assembly of five pyridine-substituted tetraphenylethylene stereoisomer ligands with silver ions (named Ag-TPE-2by-1-E, Ag-TPE-2by-2-E, Ag-TPE-2by-2-Z, Ag-TPE-2by-3-E, and Ag-TPE-2by-3-Z). These silver CCs show distinct topologies including beaded chain frameworks, linear structures, and discrete metallacycles. The single-crystal analysis results reveal the critical role of the space distribution of the coordination site and stereoisomer ligands in controlling the silver CCs' geometry configuration and modulating the optical properties. Luminescent investigations revealed that Ag-TPE-2by-2-E, Ag-TPE-2by-2-Z, Ag-TPE-2by-3-E, and Ag-TPE-2by-3-Z possess obvious mechanocharomic behaviors, which can be achieved several reversible cycles through repeated grinding and methanol soaking processes. However, the Ag-TPE-2by-1-E showed tenacious stability toward mechanical grinding and temperature. Thus, these silver CCs provide a good platform to investigate the influence of the space distribution of the coordination site of ligands on their geometry and mechanocharomic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.