Abstract

Effective silver recovery is usually restricted by either environmental pollution or high recovery costs. To tackle the issues, this study introduces a novel method for the effective recovery of silver by utilizing the alkaline sodium thiosulfate-potassium ferricyanide leaching system. The reaction kinetics of silver dissolution in this system was investigated via the rotating disk electrode technology. The influences of important parameters, including the rotation speed, sodium thiosulfate concentration, potassium ferricyanide concentration, and temperature, on the silver dissolution rate were systematically investigated. The activation energy was measured to be 17.96 kJ·mol-1 when the silver dissolution was controlled by a diffusion process. When the silver dissolution was in the region of mixed control, the reaction orders of ferricyanide and thiosulfate were found to be 0.57 and 0.19, respectively, and the reaction orders of ferricyanide and thiosulfate were 0.55 and 0.22, respectively, when the silver dissolution was controlled by surface reaction. This study has great potential for the development of an environmentally friendly silver recovery process from end--of-life products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call