Abstract
We introduce silver-copper nanoparticles incorporated into polyaniline (PANI) nanotubes using a straightforward and efficient reduction process. In this regard, PANI nanotubes with amine groups were fabricated through oxidation polymerization, followed by the attachment of Ag and Cu precursors to enable the synthesis of Ag-Cu bimetallic nanoparticles (NPs) on the pre-formed PANI nanotubes with the use of hydrazine as a reducing agent. The structural characterization of the synthesized NPs was investigated by UV–Vis spectrophotometer (UV–Vis), Dark-field emission, (EDX), X-ray diffraction (XRD) and field emission (FESEM), while the electrochemical properties were estimated by (CV) and differential pulse voltammetry (DPV). The findings indicated that the Ag-Cu NPs were present in the nanoscale range, well-dispersed, and attached to the surface of PANI nanotubes. Electrochemical investigations revealed that the Ag-Cu@PANI nanotube electrode demonstrated efficient electrooxidation of dopamine and hydroquinone without any interfering reactions, suggesting its potential use as an electrochemical biosensor for simultaneous detection of dopamine and hydroquinone. The proposed NPs-based biosensor was connected to concurrently identify dopamine and hydroquinone, illustrating moo distinguish Confinements of 0.46 µM for dopamine and 0.23 mM for hydroquinone, separately. Additionally, the manufactured sensor identified on a wide direct run the dopamine (5–25 µM), and hydroquinone (0.5–2.5 mM). Alongside these promising comes about, the Ag-Cu@PANI nanotube actualized great solidness and reproducibility, making it a favorable stage for electrochemical biosensing of dopamine and hydroquinone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.