Abstract

Silver containing silica (Ag–SiO2) thin films with and without aluminum (Al) were prepared on soda-lime-silica glass by spin coating of aqueous sols. The coating sol was formed through mixing tetraethyl orthosilicate [Si(OC2H5)4]/ethanol solution with aqueous silver nitrate (AgNO3) and aluminum nitrate nonahydrate [(AlNO3)3·9H2O] solutions. The deposited films were calcined in air at 100, 300 and 500 °C for 2 h and characterized using x-ray diffraction, UV-visible and x-ray photoelectron spectroscopy. The effect of Al incorporation and calcination treatment on microstructure and durability of the films, and chemical/physical state of silver in the silica thin film have been reported. The bactericidal activity of the films was also determined against Staphylococcus aureus via disk diffusion assay studies before and after chemical durability tests. The investigations revealed that the optical, bactericidal properties and chemical durability of Ag–SiO2 films can be improved by Al addition. The Al-modified Ag–SiO2 thin films do not exhibit any coloring after calcination in the range of 100–500 °C, illustrating that silver is incorporated within the silica gel network in ionic form (Ag+). Al incorporation also improved the overall durability and antibacterial endurance of Ag–SiO2 thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.