Abstract

Silver-graphene quantum dots are promising electrochemical sensors due to their unique electronic properties. Herein, we report the comprehensive DFT study to explore the electronic properties of silver cluster (Ag6) decorated coronene as model for silver graphene quantum dots. The current study aims to investigate the sensing ability of silver-coronene complex for non-enzymatic electrochemical detection of glucose & H2O2. The stability of the complexes of analytes with silver decorated coronene is supported by their greater interaction energies (−36.7 to −44.9 kcal mol−1). NBO charge analysis and charge decomposition analysis (CDA) reveal donor-acceptor charge transfer interactions in the complexes. Frontier molecular orbital analysis illustrates that charge is transferred from analytes to silver decorated coronene during excitation from HOMO to LUMO. The Uv–visible results show that λmax is red shifted during interactions of analytes with silver decorated coronene. The NCI analysis illustrates the strong non-covalent (M … O) and unusual M … H–O interactions in the complexes. The precedent sensing performance of Ag6-coronene might be attributed to the synergistic effect of both silver clusters and coronene in the composite. The evaluated results validate the excellent sensing ability of silver-graphene quantum dots for the detection of glucose & H2O2. The outcome of the current study and its prospects will open the avenue for the rational development of smart sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.